

ARPA-E REMEDY VAM Projects

(<u>Reducing Emissions of Methane Every Day of the Year</u>)

2024 Global Methane Forum

Jack Lewnard, Program Director

jack.lewnard@hq.doe.gov 202-507-0003

ARPA-E: Fund High-Impact, High Risk Disruptive Technologies

In 2007, The National Academies recommended Congress establish an Advanced Research Projects Agency within the U.S. Department of Energy to fund advanced energy R&D.

2

REMEDY Methane Abatement Program

- 3 yr, \$40MM program funding diverse teams, multiple approaches
 - -40,000+ natural gas-fired engines
 - -300,000 oil and gas flares
 - -200 coal mine ventilation shafts

Stage 1: Lab-scale proof of concept, preliminary economics

Stage 2: Field test for system proving 99.5% methane conversion to CO₂ and <\$40/ton CO₂ equivalent (GWP 28)

VAM Approach: Catalytic Oxidation with Recuperator

- ► VAM:
 - VAM too dilute to sustain combustion
 - Methane won't ignite below 600 C
- VAM Options
 - Enrich/Supplemental fuel
 - RTO commercial today
 - Catalytic combustion
- What's new?
 - New catalyst materials/formats
 - Lower light-off temperature
 - Longer catalyst life
 - Lower overall costs

April 4, 2024

Potential Advantages

- Hardware
 - Lower operating temperature
 - Wider methane concentration range
 - Low VAM gas pressure drop
- Modular
 - Replicable design; minimize engineering cost
 - Minimize field cost
 - More easily "Move-able"

5

Johnson Matthey Project – Bituminous Coal Field Test

- Catalyst development and design complete
- All government permits approved
- Field test unit fabrication in progress •
- Expected commissioning by Nov 2024
- Interested in international opportunities

6

PCI Project – Metallurgical Coal Field Test

- Scale up of reactor and system ongoing, 2025 field test
- Options for stand-alone catalytic reactor or "polishing" RTO's
- Seeking partnerships

** S.A. Vilekar, et al.; Performance of Flight Compatible Microlith® Catalytic Oxidizer for Exploration Trace Contaminant Control; 52nd ICES-2023-1; 16-20 July 2023, Calgary, Canada

PCI

Precision Combustion In

MIT Project – Bituminous Coal Field Test

- Low cost, non-PGM catalyst
- Low-temperature (400°C)
- Durable, Resistant to poisons
- 100% conversion of 2 ppm-2% CH₄ + variable input

April 4, 2024

- 2025 field test
- **MOXAIR start-up seeking partners**

8

MOXAIR

CHANGING WHAT'S POSSIBLE

REMEDY Needs Engagement with the Coal Mining Industry

- Goal is de-risking potential technical approaches from the perspective of
 - Coal mine operators
 - 3rd party owner/operators
 - Carbon credit trading agencies
 - Regulators (MSHA, EPA, states, international agencies)
- Specific Input Possibilities:
 - Mine site prioritization, access
 - Prior VAM data, future emission projections
 - Life Cycle Analysis, Levelized Cost of Carbon data/guidance for teams
 - Engineering, operations, safety
 - Recommendations for VAM stakeholders engineering, environmental companies; researchers, equipment vendors
- Success requires communications and coordination among stakeholders

Teams and Contacts

- ARPA-E REMEDY Program Director jack.lewnard@hq.do.gov
- Catalytic Oxidation of Ventilation Air Methane Prime: Johnson Matthey Inc. Team Members: Oak Ridge National Laboratory, CONSOL Energy Inc. Joseph Fedeyko Joseph.Fedeyko@jmusa.com
- Destruction of VAM Using a Modular Catalytic Element System Prime: Precision Combustion Inc (PCI) Team members: SRK Consulting, University of Kentucky Subir Roychoudhury <u>sroychoudhury@precision-combustion.com</u>
- VAM Abatement via Catalytic Oxidation (VAMCO) Prime: Massachusetts Institute of Technology Team Members: Northeastern University; Fluor; Alliance Resource Partners Desiree Plata <u>dplata@mit.edu</u>

